Carboidratos

- ⇒ Poliidroxialdeídos e Poliidroxicetonas com as seguintes características
- No mínimo três átomos de carbono;
 Grupos funcionais aldeído ou cetona
- 3. Obedecer a seguinte fórmula: (CH₂O)_n

Carboidratos assumem diferentes funções na célula:

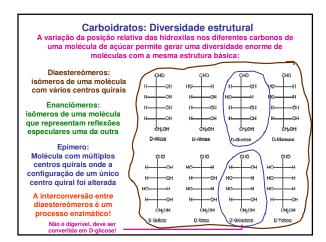
- 1. Fonte de energia
- 2. Reserva de energia
- 3. Componentes estruturais (paredes celulares, superfícies celulares, componentes estruturais do DNA, receptores, etc.)

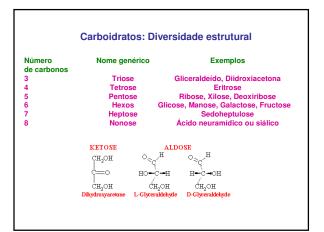
Carboidratos ocorrem na forma de monômeros e de polímeros:

- Oligossacarídeos: polissacarídeos com entre 2 e 20 monômeros
 Polissacarídeos: carboidratos com mais de 20 monômeros

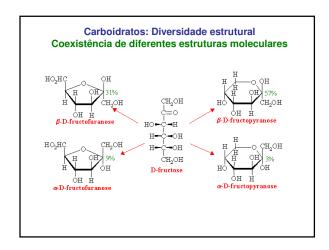
Carboidratos: Nomenclatura

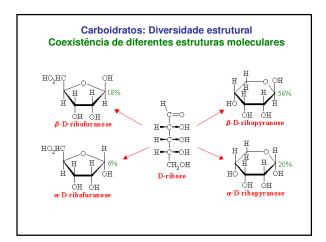
Projeção de Fischer:

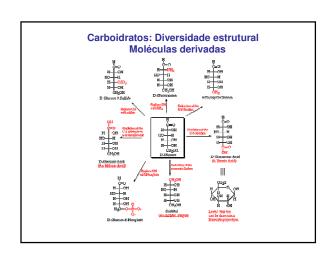

D- gliceraldeído

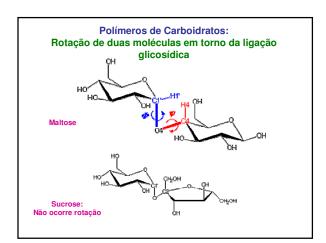

- > Ligações com o carbono orientadas para fora e para cima do plano
- imaginário do carbono são representadas por linhas horizontais. Ligações com o carbono orientadas para fora e para trás do plano imaginário do carbono são representadas por linhas verticais.
- ⇒ Seres biológicos sintetizam principalmente as formas D de açúcares.

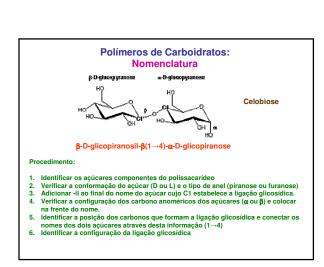
Carboidratos: Nomenclatura

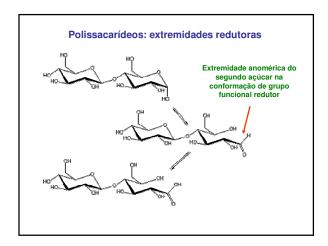

Como é definida a conformação L ou D de um açúcar com múltiplos centros quirais? Configuração absoluta do carbono quiral mais distante dos grupos aldeído ou cetona.

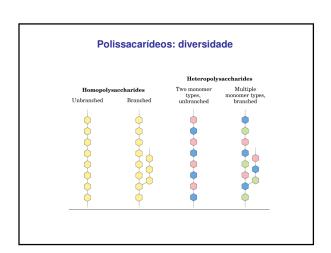

A numeração dos átomos de carbono em uma molécula de açúcar se inicia sempre pela extremidade mais próxima do carbono com o grupo ceto ou aldeído.

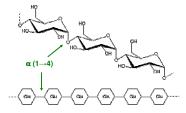





Carboidratos: Diversidade estrutural Ciclização A forma mais estável de muitos carboidratos com mais de 5 carbonos em solução é a forma cíclica (formação de anel intramolecular)		
OH HOH	Piranose	Pyran
CH-OH H	CH₂OH H H H OH H Furanose	Furan



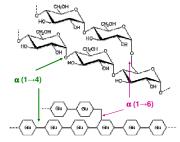




Polissacarídeos: Reservatórios de energia metabólica

Porque armazenar energia metabólica na forma de polímeros e não de monômeros?

- Pressão osmótica é proporcional ao número de moléculas. 1000 moléculas de glicose gerariam uma pressão osmótica 1000 vezes maior do que 1 polissacarídeo com 1000 monômeros de glicose.
- O armazenamento de energia metabólica na forma de um grande número de moléculas individuais dificultaria muito a regulação metabólica.
- Monômeros de glicose são mobilizados através da ação de enzimas (amilases), que separam os monômeros a partir da extremidade não-redutora.

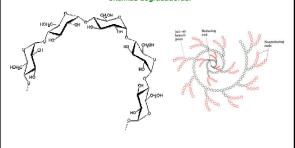

Polissacarídeos de Reserva ligações sacarídicas α (1→4)

Amilose

Molécula linear de armazenamento de glicose em plantas (mandioca, trigo, milho, etc.), 1 dos componentes do amido 1000 a 500.000 moléculas de glicose

Polissacarídeos de Reserva ligações sacarídicas α (1 \rightarrow 4) e α (1 \rightarrow 6)

Amilopectina:


Molécula ramificada (1 ramificação a cada 25 a 30 monômeros) de armazenamento de glicose em plantas (mandioca, trigo, milho, etc.), 1 dos componentes do amido.

Glicogênio:

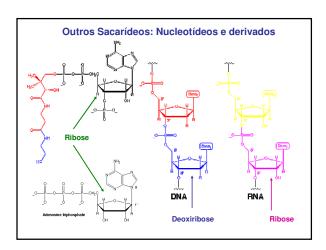
Molécula ramificada de armazenamento de glicose em animais. Tem a mesma estrutura da amilopectina, mas com ramificações mais freqüentes (1 ramificação a cada 10 a 12 monômeros)

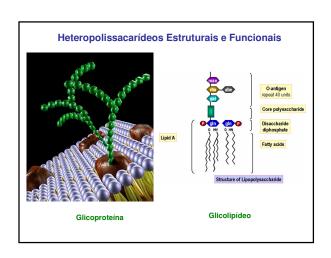
Polissacarídeos de Reserva ligações sacarídicas α (1 \rightarrow 4) ou α (1 \rightarrow 6)

Conseqüência importante das ligações a entre as moléculas de glicose em polímeros utilizados como reservas energéticas: o polímero adota uma conformação helical, o que aumenta a sua solubilidade e, portanto, o acesso a enzimas degradadoras.

Polissacarídeos Estruturais ligações sacarídicas ou β (1→6)

Celulose: polímero linear de glicose


A linearidade da molécula e a complementaridade estrutural permite a formação de fibras, que são estabilizadas por numerosas pontes de hidrogênio, que conferem estabilidade mecânica à celulose e excluem água por entre os polímeros.


Polissacarídeos Estruturais ligações sacarídicas ou β (1 \rightarrow 6)

Quitina:

Polimero linear de glicose com modificações de acetamida no C2,o que torna a molécula ainda menos suscetível à água do que a celulose.

Principal componente estrutural das carapaças de insetos e de crustáceos.

